Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(8): e2315653121, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38346199

ABSTRACT

Monkeypox virus (MPXV) infections in humans cause neurological disorders while studies of MPXV-infected animals indicate that the virus penetrates the brain. Pyroptosis is an inflammatory type of regulated cell death, resulting from plasma membrane rupture (PMR) due to oligomerization of cleaved gasdermins to cause membrane pore formation. Herein, we investigated the human neural cell tropism of MPXV compared to another orthopoxvirus, vaccinia virus (VACV), as well as its effects on immune responses and cell death. Astrocytes were most permissive to MPXV (and VACV) infections, followed by microglia and oligodendrocytes, with minimal infection of neurons based on plaque assays. Aberrant morphological changes were evident in MPXV-infected astrocytes that were accompanied with viral protein (I3) immunolabelling and detection of over 125 MPXV-encoded proteins in cell lysates by mass spectrometry. MPXV- and VACV-infected astrocytes showed increased expression of immune gene transcripts (IL12, IRF3, IL1B, TNFA, CASP1, and GSDMB). However, MPXV infection of astrocytes specifically induced proteolytic cleavage of gasdermin B (GSDMB) (50 kDa), evident by the appearance of cleaved N-terminal-GSDMB (30 kDa) and C-terminal- GSDMB (18 kDa) fragments. GSDMB cleavage was associated with release of lactate dehydrogenase and increased cellular nucleic acid staining, indicative of PMR. Pre-treatment with dimethyl fumarate reduced cleavage of GSDMB and associated PMR in MPXV-infected astrocytes. Human astrocytes support productive MPXV infection, resulting in inflammatory gene induction with accompanying GSDMB-mediated pyroptosis. These findings clarify the recently recognized neuropathogenic effects of MPXV in humans while also offering potential therapeutic options.


Subject(s)
Monkeypox virus , Mpox (monkeypox) , Animals , Humans , Monkeypox virus/physiology , Pyroptosis , Astrocytes , Gasdermins
2.
Brain Behav Immun ; 115: 374-393, 2024 01.
Article in English | MEDLINE | ID: mdl-37914099

ABSTRACT

Neuroinflammation coupled with demyelination and neuro-axonal damage in the central nervous system (CNS) contribute to disease advancement in progressive multiple sclerosis (P-MS). Inflammasome activation accompanied by proteolytic cleavage of gasdermin D (GSDMD) results in cellular hyperactivation and lytic death. Using multiple experimental platforms, we investigated the actions of GSDMD within the CNS and its contributions to P-MS. Brain tissues from persons with P-MS showed significantly increased expression of GSDMD, NINJ1, IL-1ß, and -18 within chronic active demyelinating lesions compared to MS normal appearing white matter and nonMS (control) white matter. Conditioned media (CM) from stimulated GSDMD+/+ human macrophages caused significantly greater cytotoxicity of oligodendroglial and neuronal cells, compared to CM from GSDMD-/- macrophages. Oligodendrocytes and CNS macrophages displayed increased Gsdmd immunoreactivity in the central corpus callosum (CCC) of cuprizone (CPZ)-exposed Gsdmd+/+ mice, associated with greater demyelination and reduced oligodendrocyte precursor cell proliferation, compared to CPZ-exposed Gsdmd-/- animals. CPZ-exposed Gsdmd+/+ mice exhibited significantly increased G-ratios and reduced axonal densities in the CCC compared to CPZ-exposed Gsdmd-/- mice. Proteomic analyses revealed increased brain complement C1q proteins and hexokinases in CPZ-exposed Gsdmd-/- animals. [18F]FDG PET imaging showed increased glucose metabolism in the hippocampus and whole brain with intact neurobehavioral performance in Gsdmd-/- animals after CPZ exposure. GSDMD activation in CNS macrophages and oligodendrocytes contributes to inflammatory demyelination and neuroaxonal injury, offering mechanistic and potential therapeutic insights into P-MS pathogenesis.


Subject(s)
Gasdermins , Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis , Animals , Humans , Mice , Cell Adhesion Molecules, Neuronal , Cuprizone/therapeutic use , Cuprizone/toxicity , Disease Models, Animal , Gasdermins/metabolism , Mice, Inbred C57BL , Microglia/pathology , Multiple Sclerosis/pathology , Multiple Sclerosis, Chronic Progressive/pathology , Nerve Growth Factors , Oligodendroglia , Proteomics
3.
Viruses ; 15(12)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38140626

ABSTRACT

There is currently no cure for HIV infection although adherence to effective antiretroviral therapy (ART) suppresses replication of the virus in blood, increases CD4+ T-cell counts, reverses immunodeficiency, and increases life expectancy. Despite these substantial advances, ART is a lifelong treatment for people with HIV (PWH) and upon cessation or interruption, the virus quickly rebounds in plasma and anatomic sites, including the central nervous system (CNS), resulting in disease progression. With recent advances in quantifying viral burden, detection of genetically intact viral genomes, and isolation of replication-competent virus from brain tissues of PWH receiving ART, it has become apparent that the CNS viral reservoir (largely comprised of macrophage type cells) poses a substantial challenge for HIV cure strategies. Other obstacles impacting the curing of HIV include ageing populations, substance use, comorbidities, limited antiretroviral drug efficacy in CNS cells, and ART-associated neurotoxicity. Herein, we review recent findings, including studies of the proviral integration sites, reservoir decay rates, and new treatment/prevention strategies in the context of the CNS, together with highlighting the next steps for investigations of the CNS as a viral reservoir.


Subject(s)
HIV Infections , Humans , HIV Infections/drug therapy , Central Nervous System , Anti-Retroviral Agents/therapeutic use , Anti-Retroviral Agents/pharmacology , Macrophages , Virus Replication , Viral Load , CD4-Positive T-Lymphocytes
4.
Viruses ; 15(2)2023 01 23.
Article in English | MEDLINE | ID: mdl-36851531

ABSTRACT

HIV-encoded DNA, RNA and proteins persist in the brain despite effective antiretroviral therapy (ART), with undetectable plasma and cerebrospinal fluid viral RNA levels, often in association with neurocognitive impairments. Although the determinants of HIV persistence have garnered attention, the expression and regulation of antiretroviral host restriction factors (RFs) in the brain for HIV and SIV remain unknown. We investigated the transcriptomic profile of antiretroviral RF genes by RNA-sequencing with confirmation by qRT-PCR in the cerebral cortex of people who are uninfected (HIV[-]), those who are HIV-infected without pre-mortem brain disease (HIV[+]), those who are HIV-infected with neurocognitive disorders (HIV[+]/HAND) and those with neurocognitive disorders with encephalitis (HIV[+]/HIVE). We observed significant increases in RF expression in the brains of HIV[+]/HIVE in association with the brain viral load. Machine learning techniques identified MAN1B1 as a key gene that distinguished the HIV[+] group from the HIV[+] groups with HAND. Analyses of SIV-associated RFs in brains from SIV-infected Chinese rhesus macaques with different ART regimens revealed diminished RF expression among ART-exposed SIV-infected animals, although ART interruption resulted in an induced expression of several RF genes including OAS3, RNASEL, MX2 and MAN1B1. Thus, the brain displays a distinct expression profile of RFs that is associated with the neurological status as well as the brain viral burden. Moreover, ART interruption can influence the brain's RF profile, which might contribute to disease outcomes.


Subject(s)
Brain Diseases , Encephalitis , Animals , Anti-Retroviral Agents , Brain , Macaca mulatta , Neurocognitive Disorders , HIV Infections/virology
5.
Brain Behav Immun ; 107: 110-123, 2023 01.
Article in English | MEDLINE | ID: mdl-36202168

ABSTRACT

BACKGROUND: Systemic inflammation accompanies HIV-1 infection, resulting in microbial translocation from different tissues. We investigated interactions between lentivirus infections, neuroinflammation and microbial molecule presence in the brain. METHODS: Brain tissues from adult humans with (n = 22) and without HIV-1 (n = 11) infection as well as adult nonhuman primates (NHPs) with (n = 11) and without (n = 4) SIVmac251 infection were investigated by RT-PCR/ddPCR, immunofluorescence and western blotting. Studies of viral infectivity, host immune gene expression and viability were performed in primary human neural cells. FINDINGS: Among NHPs, SIV DNA quantitation in brain showed increased levels among animals with SIV encephalitis (n = 5) that was associated with bacterial genomic copy number as well as CCR5 and CASP1 expression in brain. Microbial DnaK and peptidoglycan were immunodetected in brains from uninfected and SIV-infected animals, chiefly in glial cells. Human microglia infected by HIV-1 showed increased p24 production after exposure to peptidoglycan that was associated CCR5 induction. HIV-1 Vpr application to human neurons followed by peptidoglycan exposure resulted in reduced mitochondrial function and diminished beta-III tubulin expression. In human brains, bacterial genome copies (250-550 copies/gm of tissue), were correlated with increased bacterial rRNA and GroEL transcript levels in patients with HIV-associated neurocognitive disorders (HAND). Glial cells displayed microbial GroEL and peptidoglycan immunoreactivity accompanied by CCR5 induction in brains from patients with HAND. INTERPRETATION: Increased microbial genomes and proteins were evident in brain tissues from lentivirus-infected humans and animals and associated with neurological disease. Microbial molecule translocation into the brain might exacerbate neuroinflammatory disease severity and represent a driver of lentivirus-associated brain disease.


Subject(s)
HIV Infections , HIV , Humans , Neuroinflammatory Diseases , Neurocognitive Disorders , HIV Infections/complications , Brain , Receptors, CCR5/genetics
6.
Viruses ; 14(9)2022 09 06.
Article in English | MEDLINE | ID: mdl-36146779

ABSTRACT

APOBEC3 enzymes are polynucleotide deaminases, converting cytosine to uracil on single-stranded DNA (ssDNA) and RNA as part of the innate immune response against viruses and retrotransposons. APOBEC3G is a two-domain protein that restricts HIV. Although X-ray single-crystal structures of individual catalytic domains of APOBEC3G with ssDNA as well as full-length APOBEC3G have been solved recently, there is little structural information available about ssDNA interaction with the full-length APOBEC3G or any other two-domain APOBEC3. Here, we investigated the solution-state structures of full-length APOBEC3G with and without a 40-mer modified ssDNA by small-angle X-ray scattering (SAXS), using size-exclusion chromatography (SEC) immediately prior to irradiation to effect partial separation of multi-component mixtures. To prevent cytosine deamination, the target 2'-deoxycytidine embedded in 40-mer ssDNA was replaced by 2'-deoxyzebularine, which is known to inhibit APOBEC3A, APOBEC3B and APOBEC3G when incorporated into short ssDNA oligomers. Full-length APOBEC3G without ssDNA comprised multiple multimeric species, of which tetramer was the most scattering species. The structure of the tetramer was elucidated. Dimeric interfaces significantly occlude the DNA-binding interface, whereas the tetrameric interface does not. This explains why dimers completely disappeared, and monomeric protein species became dominant, when ssDNA was added. Data analysis of the monomeric species revealed a full-length APOBEC3G-ssDNA complex that gives insight into the observed "jumping" behavior revealed in studies of enzyme processivity. This solution-state SAXS study provides the first structural model of ssDNA binding both domains of APOBEC3G and provides data to guide further structural and enzymatic work on APOBEC3-ssDNA complexes.


Subject(s)
DNA, Single-Stranded , Retroelements , APOBEC-3G Deaminase/metabolism , Cytidine Deaminase , Cytosine , Deoxycytidine , Polynucleotides , Protein Binding , Proteins , RNA/metabolism , Scattering, Small Angle , Uracil , X-Ray Diffraction , X-Rays
7.
mBio ; 12(6): e0278421, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34903055

ABSTRACT

HIV infection persists in different tissue reservoirs among people with HIV (PWH) despite effective antiretroviral therapy (ART). In the brain, lentiviruses replicate principally in microglia and trafficking macrophages. The impact of ART on this viral reservoir is unknown. We investigated the activity of contemporary ART in various models of lentivirus brain infection. HIV-1 RNA and total and integrated DNA were detected in cerebral cortex from all PWH (n = 15), regardless of ART duration or concurrent plasma viral quantity and, interestingly, integrated proviral DNA levels in brain were significantly higher in the aviremic ART-treated group (P < 0.005). Most ART drugs tested (dolutegravir, ritonavir, raltegravir, and emtricitabine) displayed significantly lower 50% effective concentration (EC50) values in lymphocytes than in microglia, except tenofovir, which showed 1.5-fold greater activity in microglia (P < 0.05). In SIV-infected Chinese rhesus macaques, despite receiving suppressive (n = 7) or interrupted (n = 8) ART, brain tissues had similar SIV-encoded RNA and total and integrated DNA levels compared to brains from infected animals without ART (n = 3). SIV and HIV-1 capsid antigens were immunodetected in brain, principally in microglia/macrophages, regardless of ART duration and outcome. Antiviral immune responses were comparable in the brains of ART-treated and untreated HIV- and SIV-infected hosts. Both HIV-1 and SIV persist in brain tissues despite contemporary ART, with undetectable virus in blood. ART interruption exerted minimal effect on the SIV brain reservoir and did not alter the neuroimmune response profile. These studies underscore the importance of augmenting ART potency in different tissue compartments. IMPORTANCE Antiretroviral therapy (ART) suppresses HIV-1 in plasma and CSF to undetectable levels. However, the impact of contemporary ART on HIV-1 brain reservoirs remains uncertain. An active viral reservoir in the brain during ART could lead to rebound systemic infection after cessation of therapy, development of drug resistance mutations, and neurological disease. ART's impact, including its interruption, on brain proviral DNA remains unclear. The present studies show that in different experimental platforms, contemporary ART did not suppress viral burden in the brain, regardless of ART component regimen, the duration of therapy, and its interruption. Thus, new strategies for effective HIV-1 suppression in the brain are imperative to achieve sustained HIV suppression.


Subject(s)
Anti-HIV Agents/pharmacology , Brain/virology , HIV Infections/drug therapy , HIV-1/drug effects , Animals , Brain/immunology , Disease Models, Animal , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , HIV-1/physiology , Humans , Macaca mulatta , Macrophages/immunology , Macrophages/virology , Microglia/virology , Mutation/drug effects , Proviruses/drug effects , Proviruses/genetics , Proviruses/physiology , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/drug effects , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/physiology , Virus Latency/drug effects
8.
Nat Commun ; 11(1): 632, 2020 01 31.
Article in English | MEDLINE | ID: mdl-32005813

ABSTRACT

APOBEC3G, a member of the double-domain cytidine deaminase (CD) APOBEC, binds RNA to package into virions and restrict HIV-1 through deamination-dependent or deamination-independent inhibition. Mainly due to lack of a full-length double-domain APOBEC structure, it is unknown how CD1/CD2 domains connect and how dimerization/multimerization is linked to RNA binding and virion packaging for HIV-1 restriction. We report rhesus macaque A3G structures that show different inter-domain packing through a short linker and refolding of CD2. The A3G dimer structure has a hydrophobic dimer-interface matching with that of the previously reported CD1 structure. A3G dimerization generates a surface with intensified positive electrostatic potentials (PEP) for RNA binding and dimer stabilization. Unexpectedly, mutating the PEP surface and the hydrophobic interface of A3G does not abolish virion packaging and HIV-1 restriction. The data support a model in which only one RNA-binding mode is critical for virion packaging and restriction of HIV-1 by A3G.


Subject(s)
APOBEC-3G Deaminase/chemistry , HIV Infections/enzymology , HIV-1/physiology , APOBEC-3G Deaminase/genetics , APOBEC-3G Deaminase/metabolism , Animals , Dimerization , HIV Infections/virology , HIV-1/genetics , Host-Pathogen Interactions , Humans , Macaca mulatta , Protein Domains , RNA, Viral/genetics , RNA, Viral/metabolism , Virus Assembly , Virus Replication
9.
Nucleic Acids Res ; 48(3): 1353-1371, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31943071

ABSTRACT

The human apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (APOBEC3, A3) family member proteins can deaminate cytosines in single-strand (ss) DNA, which restricts human immunodeficiency virus type 1 (HIV-1), retrotransposons, and other viruses such as hepatitis B virus, but can cause a mutator phenotype in many cancers. While structural information exists for several A3 proteins, the precise details regarding deamination target selection are not fully understood. Here, we report the first parallel, comparative analysis of site selection of A3 deamination using six of the seven purified A3 member enzymes, oligonucleotides having 5'TC3' or 5'CT3' dinucleotide target sites, and different flanking bases within diverse DNA secondary structures. A3A, A3F and A3H were observed to have strong preferences toward the TC target flanked by A or T, while all examined A3 proteins did not show a preference for a TC target flanked by a G. We observed that the TC target was strongly preferred in ssDNA regions rather than dsDNA, loop or bulge regions, with flanking bases influencing the degree of preference. CT was also shown to be a potential deamination target. Taken together, our observations provide new insights into A3 enzyme target site selection and how A3 mutagenesis impacts mutation rates.


Subject(s)
Cytidine Deaminase/genetics , DNA, Single-Stranded/genetics , DNA-Binding Proteins/genetics , Deamination/genetics , APOBEC Deaminases , Binding Sites/genetics , Cell Line , Cytidine Deaminase/chemistry , Cytosine Deaminase/chemistry , Cytosine Deaminase/genetics , DNA, Single-Stranded/chemistry , DNA-Binding Proteins/chemistry , HIV-1/genetics , HIV-1/pathogenicity , Hepatitis B virus/genetics , Humans , Mutagenesis/genetics , Nucleic Acid Conformation , Protein Structure, Secondary , Retroelements/genetics
10.
Heliyon ; 5(4): e01498, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31025011

ABSTRACT

The APOBEC3 enzymes can induce mutagenesis of HIV-1 proviral DNA through the deamination of cytosine. HIV-1 overcomes this restriction through the viral protein Vif that induces APOBEC3 proteasomal degradation. Within this dynamic host-pathogen relationship, the APOBEC3 enzymes have been found to be beneficial, neutral, or detrimental to HIV-1 biology. Here, we assessed the ability of co-expressed APOBEC3F and APOBEC3G to induce HIV-1 resistance to antiviral drugs. We found that co-expression of APOBEC3F and APOBEC3G enabled partial resistance of APOBEC3F to Vif-mediated degradation with a corresponding increase in APOBEC3F-induced deaminations in the presence of Vif, in addition to APOBEC3G-induced deaminations. We recovered HIV-1 drug resistant variants resulting from APOBEC3-induced mutagenesis, but these variants were less able to replicate than drug resistant viruses derived from RT-induced mutations alone. The data support a model in which APOBEC3 enzymes cooperate to restrict HIV-1, promoting viral inactivation over evolution to drug resistance.

11.
Virology ; 527: 21-31, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30448640

ABSTRACT

The APOBEC3 enzyme family are host restriction factors that induce mutagenesis of HIV-1 proviral genomes through the deamination of cytosine to form uracil in nascent single-stranded (-)DNA. HIV-1 suppresses APOBEC3 activity through the HIV-1 protein Vif that induces APOBEC3 degradation. Here we compared two common polymorphisms of APOBEC3F. We found that although both polymorphisms have HIV-1 restriction activity, APOBEC3F 108 A/231V can restrict HIV-1 ΔVif up to 4-fold more than APOBEC3F 108 S/231I and is partially protected from Vif-mediated degradation. This resulted from higher levels of steady state expression of APOBEC3F 108 A/231 V. Individuals are commonly heterozygous for the APOBEC3F polymorphisms and these polymorphisms formed in cells, independent of RNA, hetero-oligomers between each other and with APOBEC3G. Hetero-oligomerization with APOBEC3F 108 A/231V resulted in partial stabilization of APOBEC3F 108 S/231I and APOBEC3G in the presence of Vif. These data demonstrate functional outcomes of APOBEC3 polymorphisms and hetero-oligomerization that affect HIV-1 restriction.


Subject(s)
Cytosine Deaminase/genetics , HIV Infections/genetics , HIV-1/genetics , Polymorphism, Genetic , Virus Replication , APOBEC-3G Deaminase/chemistry , APOBEC-3G Deaminase/genetics , Cytosine Deaminase/chemistry , DNA, Viral/genetics , HEK293 Cells , HIV-1/physiology , Heterozygote , Humans , Mutation , Protein Multimerization , Protein Stability , Virion/metabolism , vif Gene Products, Human Immunodeficiency Virus/genetics , vif Gene Products, Human Immunodeficiency Virus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...